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In a previous paper we saw that Grothendieck's functorial approach to algebraic 
geometry and algebraic groups in particular is in consonance with our framework 
of logical quantization. This paper, as a sequel, consolidates the consonance 
between functorial geometry and logical quantization by demonstrating that 
Moerdijk and Reyes' functorial approach to differential geometry can be 
adequately poised within logical quantization. 

0. INTRODUCTION 

There are at least two principal approaches to algebraic geometry and 
algebraic groups in particular, namely, geometric and functorial ones, to 
both of which A. Grothendieck has made decisive contributions. The former 
culminates in his celebrated scheme theory, which any not-too-elementary 
textbook on modem algebraic geometry is obliged to deal with in some way 
or other. See, e.g., Hartshome (1977), which is considered the standard 
textbook on algebraic geometry of our day. For the latter stream in algebraic 
geometry the reader is referred to the worthwhile book by Demazure and 
Gabriel (1980). 

We know well that infinitesimals were active in the realm of analysis 
during the days of i. Newton and G. W. E Leibniz and that they were rampant 
throughout the works of such pioneers in the arena of modem geometry as 
E. Cartan, S. Lie, and B. Riemann. Although the so-called �9 - ~ arguments 
made mathematics rigorous by eradicating infinitesimals relentlessly, many 
vivid intuitions of those good old days were completely lost in the labyrinth 
of logic. 

Nowadays infinitesimals are coming back in mathematics through two 
streams. One is nonstandard analysis, which is an application of model 
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theory to analysis. Model theory can provide many nonstandard models of 
mathematical theories, in particular, models of analysis in which infinitesimals 
are consistently alive. For nonstandard analysis the reader is referred, e.g., 
to Robinson (1966) and Stroyan and Luxemberg (1976). 

The renaissance of infinitesimals can be seen also in synthetic differential 
geometry, in which infinitesimals are redeemed by weaking the underlying 
logic from classical to intuitionistic, so that every argument and each construc- 
tion should be constructive. In contrast to nonstandard analysis, synthetic 
differential geometry employs nilpotent infinitesimals besides invertible ones. 
For synthetic differential geometry the reader is referred to Kock's (1981) 
Bible, and for its functorial semantics he or she is referred to Moerdijk and 
Reyes (1991), in which, among other things, a highly intuitive proof of the 
so-called Gauss-Bonnet theorem in dimension 2 is given simply by adding 
infinitesimal angles in various ways. 

In a previous paper (Nishimura, 1995c) we showed that Grothendieck's 
functorial approach to algebraic geometry matches well with our developing 
theory of logical quantization. This paper is devoted, as a sequel to the above 
one, to showing that the functorial semantics of differential geometry falls 
neatly into place within our favorite framework of logical quantization, 
enhancing our tenet that functorial semantics is concordant with logical 
quantization. Moerdijk and Reyes (1991) deal with four models eligible 
for synthetic differential geometry (called smooth toposes), all of which 
are examples of Grothendieck toposes. Therefore this paper is concerned 
almost exclusively with the logical quantization of Grothendieck toposes, 
only touching upon the smooth Zariski topos among their four smooth 
toposes, leaving truly geometric considerations to su.bsequent papers (e.g., 
Nishimura, n.d.-a). 

The organization of this paper goes as follows: Section 1 is devoted to 
Booleanization of algebraic theories a 1~ Lawvere and relations between 
two such Booleanizations over possibly different complete Boolean algebras. 
Section 2 deals with Booleanization of Grothendieck toposes and relations 
between two such Booleanizations over possibly different complete Boolean 
algebras, rectifying the hasty treatments of Theorem 2.6 and some others of 
our previous paper (Nishimura, 1995c). Algebraic theories and Grothendieck 
toposes are logically quantized in Section 3. A miscellany of examples 
is given as an appendix, and the reader is referred to them upon occasion. 
He or she should be familiar with all of them before reading Section 3. 

We assume the reader to be familiar with our previous paper (Nishimura, 
1995c), though we are not necessarily faithful to its notation and terminology. 
The rest of this section is devoted to fixing notation and providing some 
preliminaries. 
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0.1. Universes of  Small Sets 

To dodge the famous paradoxes of  set theory or to paper them over, the 
usage of  a universe U, which is by definition a set of  sets closed under all 
reasonable set-theoretic operations, is a common practice in category theory. 
For the exact definition of  a universe the reader is referred to MacLane (1971, 
Chapter I, w Schubert (1972, w and Borceux (1994, Vol. 1, w In 
this paper we assume that there are two universes V0 and V~ with V0 ~ V~. 
A set belonging to Vi is called smalli (i = 0, 1). The adjective "small/" is 
applied to structures whose underlying sets are small,.. The category of small,. 
sets and small,, functions is denoted by Ensi. 

0.2. Boolean Locales 

The category of  small0 complete Boolean algebras and their complete 
Boolean homomorphisms is denoted by Bool. Its dual category is denoted 
by BLoc.  The objects of  BLoc are called Boolean locales and are denoted 
by X, Y, . . . .  The morphisms of  BLoc  are denoted by f, g, . . . .  If  a Boolean 
locale X is to be put down as an object of  Bool, it is denoted by .~(X)  for 
emphasis, though X and ~ ( X )  denote the same entity. The morphism of Bool 
corresponding to a morphism f: X --> Y of BLoc  is denoted by ~ * ( i ) ,  while 
the right-adjoint o f ~ * ( f ) :  ~ (Y)  --> ~ ( X )  whose existence is guaranteed by 
Theorem 2. l of  Nishimura (1993b) is denoted b y ~ . ( f ) .  A manual o f  Boolean 
locales is a small0 subcategory of  BLoc satisfying certain mild constraints, 
as was the case in our previous paper (Nishimura, 1995c). 

0.3. X-Sets and X-Sets 

Let X be a Boolean locale, which shall be fixed throughout this subsec- 
tion. We will often write B for ~ ( X ) .  An X-set is a pair (U, I" = "~) of  a 
set U and a function ~" = "~: U • U--~ B abiding by the following conditions: 

( 0 . 3 . 1 )  = = I y  = x R  
(0 .3 .2 )  = ^ I y  = z R  -< Ix = z R  

for all x, y, z E U. We will often write Ix = Y~x, ~x = yI u, or simply ~x = 
y]] for [Ix = y ~ ,  unless confusion may arise. We will often write ExUx, EUx, 
Exx, or Ex for Ix = xl. An X-se_~t (U, I" = "l) is often represented simply by 
its underlying set U. Given X-sets (U, [[" = .]]u) and (V, I" = "Iv), we write 
(U, [[- = .]]u) •  (V, I" = .]iv) for the X-set (U •  V, [[- = .~UXxV), where 

(0.3.3) U •  {(x,y) ~ U •  V I E V x =  EVy} 
(0.3.4) ~(x, y) = (x', y,)~Vxxv = ~x = x'] u A ~y = y,]V for all (x, y), 

(x', y ')  ~ U Xx V 
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To make the set of all smalli X-sets a category Bensi(X) (i = 0, 1), we 
need to define a morphism from a small/X-se__t U to a small X-se___tt V, which 
is to be a function B: U x V ~ B abiding by the following conditions: 

(0.3.5) Ix = x']  v A g(X, y) <-- B(X', y) 
(0.3.6) 8(X, y) A [y = y,]V <_ B(X, y ')  
(0.3.7) B(X, y) A B(X, y ')  --< ~y = y,]V 
(0.3.8) Vy~v~(X, y)  = EX 

for all x, x' E U and all y, y '  ~ V. 
Given an X-se___~t (U, ~- = -]), a function et: U ~ B is called a singleton 

if it satisfies the following conditions: 

(0.3.9) r A IX = y]] --< or(y) 
(0.3.10) Ct(X) A a(y)  --< [IX = y]] 

for all x, y ~ U. It is easy to see that each x e U gives rise to a singleton 
{x} assigning to each y ~ U [~x = y] ~ B. The X-se___tt (U, [. = -1]) is called 
an X-set  if every singleton is of the form {x} for a unique x ~ U. We denote 
by BEnsi(X) the full subcategory of BEnsi(X) whose objects are all X-sets 
(i = 0, 1). As is discussed in Goldblatt (1979, w167 and 14.7), the categories 
BEnsi(X) and BEnsi(X) are toposes. As we have discussed in Nishimura 
(1995b, Theorem 1.2), there is a geometric morphism (iBE,s~[X], aBE,~[X]) 
from BEns,.(X) to BEns,.(X). 

Let U be a small~ X-se_tt and V a small~ X-set. Then there is a natural 
bijection between the morphisms from U to V in BEnsl(X) and the functions 
f :  U ~ V yielding the following conditions: 

(0.3.11) Ix = y]]U <_ ~f(x) = f (y )]V 
(0.3.12) Err(x) --< EUx 

for all x, y E U. The reader is referred to Goldblatt (1979, w for the 
detailed construction of this well-known bijection. 

Let f: X_ --~ X+ be a morphism in BLoc. Then the assignment 

(U, [[- = .]u) e Ob nEns~(X+) ~ (U, ~*(f)([[- = .]iv)) ~ Ob BEns~(X_) 

naturally induces a functor _/*: BEnsI(X+) ~ BEnsI(X_), which in turn gives 
rise to functors 

_t_c* = =f* o illEnsl[X+]: B E n s t ( X + )  ~ BEnsl(X_ ) 

f* = aaEml[X_] o _/*: BEnst(X+) --> BEnsl(X_) 

On the other hand, the assignment 

(V, ~. = "]b ~ Ob BEn~(X_) 

aBE~[X+](V, ~.( f ) (~" = .]IV)) E Ob BEnsl(X+) 
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naturally induces a functor f,:  BEns1(X_) ---> BEnsl(X+). As we discussed 
in Nishimura (1993b, w the pair (f,, f*) forms a geometric morphism from 
BEnsI(X-) to BEnsI(X+), i.e., f* q f ,  and f* is left-exact. Since the geometric 
morphism (f,, f*): BEnsl(X-) ---> BEnsl(X+) corresponds to the morphism 
f: X_ ---> X+ in BLoc under Theorem 2.6 of Nishimura (1993b) and f is open 
by Theorem 2.13 of Nishimura (1993b), the geometric morphism (f,, f*) is 
essential due to Exercise 2.13.8 of Borceux (1994, Vol. 3) in the sense that 
f* has a left-adjoint fi: BEns~(X_) --> BEns~(X+). In particular, the functor 
f*: BEnst(X+) --> BEnst(X_) preserves not only arbitrary colimits, but also 
arbitrary limits by dint of Theorem 1 of MacLane (1971, Chapter V, w 

0.4. Two Transfer Principles 

Let X be a Boolean locale with B = ,~(X). As we have discussed in 
Nishimura (1993b), the topos BEns~(X) is equivalent to the category of sets 
and functions within the Scott-Solovay universe V~ a). As Jech (1978, Theorem 
43) and others have discussed, the universe V~ B) enjoys ZFC (Zermelo- 
Fraenkel set theory with the axiom of choice), which is the core principle 
of Boolean mathematics. For Boolean mathematics, the reader is referred, 
e.g., to Nishimura (1984, 1991, 1992, 1993a), Ozawa (1983, 1984, 1985), 
Smith (1984), and the Bible of Boolean mathematics, Takeuti (1978). Since 
every branch of mathematics, ranging from algebraic geometry to functional 
analysis, is in principle to be developed within ZFC, the Scott-Solovay 
universe VI B) and therefore its equivalent BEnsl(X) enjoy all classical mathe- 
matics (=mathematics based on classical logic). This transfer principle from 
standard mathematics to Boolean mathematics is designated the Zermelo- 
Fraenkel transfer principle (ZFTP). The application of the transfer principle 
is usually called Booleanization. 

Let f: X_ --> X+ be a morphism of BLoc. Due to Theorem 2.13 of 
Nishimura (1993b), f is open, so that the geometric morphism (f., f*): 
BEnsl(X-) --> BEnsl(X+) is also open by Proposition 2 of MacLane and 
Moerdijk (1992, Chapter IX, w This implies that every first-order property 
holding in a (many-sorted) first-order structure z~' in BEnsl(X+) persists in 
the derived first-order structure f*zJ in BEnsI(X-), as is claimed in Corollary 
4 of MacLane and Moerdijk (1992, Chapter X, w This transfer principle 
is designated the first-order transfer principle (FOTP). 

0.5. X-Categories 

Let X be a Boolean locale. The interpretation of a category within the 
topos BEnsi(X) gives rise to the notion of a small,. X-category (i = 0, 1), as 
discussed in Nishimura (1995c, w By way of example, the totality of 
BEnsi(Xp)'s [p E 9(X)]  lumps together to form an X-category . . ~ i ( X ) ,  
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as was dealt with in Nishimura (1995c, Example 1.1). The notion of a functor 
can be interpreted within the topos BEus`.(X) to yield the notion of a (small,.) 
X-functor of small,. X-categories. Given a small~ X-category ~ and x, y 
Ob qg, the set 

{ ~ f  x F p ---> y Fp ~ Mor ~ for some p e ~.~(X) with p -< Ex A Ey} 

can be regarded both as an XE~-set ~x(X, y) and as an XE..-set ~'X(x, y). The 
assignment to each y E Ob ~" of the XEy-functor ~'x(?, Y): ~' ~Ey ---> ~'~,~l (XEr) 
naturally induces the covariant Yoneda embedding y ,  of ~ into ~'s 
while the assignment to each x e Ob c~ of the X~-functor ~'X(x, ?): ~ / E x  
---> ~ l ( X ~ )  naturally induces the contravariant Yoneda embedding y* of 
~' into ~ l ( X ) .  

Let f: X_ --> X+ be a morphism of Boolean locales. The notion of an 
X-functor was generalized in our previous paper (Nishimura, 1995c, w to 
that of an f-functor from a small! X+-category ~+ to a smal4 X_-category 
~_ .  By way of example, the functors f*: BEusl((X+)p) ---> BEusl((X_)~0~p)) 
for all p ~ ~(X+) lump together to form an f-functor f~,~l: ~ l ( X + )  ---> 
~'~,~l(X-),  where fp denotes the morphism of Boolean locales from 
(X_)~r to (X+)p naturally induced by f. The f-functor f ~ l ,  naturally 
induces such f-functors as f ~ ,  which was discussed amply in our previous 
paper (Nishimura, 1995c). Unless confusion may occur, the superscripts in 
such notations as f ~ l  and f ~  are often omitted, so that the notation i* 
enjoys a bit of polysemy. 

0.6. Miscellaneous Remarks 

We denote by R and Z the .set of real numbers and that of natural 
numbers (beginning with 0), respectively. A ring always means a commutative 
ring with unity, and so homomorphisms of rings are required to preserve 
unities. 

1. ALGEBRAIC THEORIES 

For algebraic theories ~ la Lawvere (1963) the reader is referred to 
Borceux (1994, Vol. 2, w and Schubert (1972, w 

1.0. The Booleanization of Adjunctions 

Let X be a Boolean locale, which shall be fixed throughout this subsec- 
tion. Given two X-categories ~ and ~ ,  their canonical X-product ~" •  ~r 
is defined as follows: 

(1.0.1) O b ~ •  = O b f ~ X x O b  
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(1.0.2) 
(1.0.3) 
(1.0.4) 
(1.0.5) 
(1.0.6) 

M o r W X x ~  = M o r W •  
d~'xx~((f, g)) = d ~ f )  = d~(g) for all (f, g) ~ Mor W •  Mor 
rfexx~((f, g)) = r~e(.f) = r~(g) for all (f, g) ~ MorW • M o r ~  
id~xx~((x, y)) = (id~x), ida(y)) for all (x, y) ~ Ob W •  Ob 
(f ' ,  g') O~xx~ (f, g) = (f '  o~f, g' o~ g) for all ((f', g'), (f, g)) 

Mor(W x x ~ )  XOb~'Xx~ Mor(W Xx ~ )  

Let W and ~r be smalll X-categories, 9-an X-functor from W to ~ ,  and 
W an X-functor from ~ to W. These entities shall be fixed throughout the 
remainder of this subsection. 

Example 1.0.1. The assignment (x, y) ~ Ob ~op •  ~ '-* 
(Ex, ~x(X, y)), where ~x(X, y) is to be regarded as an XEx-Set, naturally 
induces an X-functor from Wop Xx ~' to ~'W,-~41(X), to be denoted by ~(?, 
??)x. Similarly, we have an X-functor from ~op •  5~ to . ~ ' ~ I ( X ) ,  to be 
denoted by ~ (? ,  ??)x. 

Example 1.0.2. The assignment (x, y) ~ Ob Wop •  ~r 
(Ex, ~x(9-x, y)), where ..~x(~rx, y) is to be put down as an XEx-Set, naturally 
induces an X-functor from Wop •  ~ to ~'~z.41(X), to be denoted by 
~(W-?, ??)x- Similarly, the assignment (x, y) e Ob W ~ •  ~ ~ (Ex, ~x(X, 
~'y)), where Wx(X, ~'y) is to be put down as an X~-set, naturally induces 
an X-functor from W ~ •  ~r to ~ t(X), to be denoted by ~(?, ~'??)x- 

If there exists an X-isomorphism q0 between the two X-functors 
~ ( 9 - ? ,  ??)x and W(?, W??)x from ~ P  •  to ~ ' ~ l ( X ) ,  then the triple 
(~,, ge, q~) is called an X-adjunction from W to ~ ,  in which 3-  is called an 
X-left-adjoint of ~' and ~' is called an X-right-adjoint of J .  The X-left- 
adjoint of W is determined uniquely by ~' up to natural X-isomorphisms so 
long as it exists, and the X-right-adjoint of ~-is determined uniquely by ~" 
up to natural X-isomorphisms so long as it exists, as can be seen simply by 
Booleanizing the corresponding statements of standard category theory. 

1.1. The Booleanization of Algebraic Theories 

Let X be a Boolean locale with ~ (X)  = B, which shall be fixed through- 
out this subsection. An algebraic X-theory is a small0 X-category ,Y-with a 
sequence {Xn}nES of total objects such that: 

(1.1.1) {Xn},EN is an X-basis of the X-set Ob 3 -  
(1.1.2) Fo reachn  ~ N , x ~ i s a n n t h X - p o w e r o f x l  

Such a sequence {xn}~N is unique if it exists, and it is called the core 
of the algebraic X-theory J.. Given algebraic X-theories .9- and S :  with their 
cores {x~}~N and {Y~}~N, respectively, an X-theory-morphism from J"  to 
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S" is an X-functor ~." 3----> 50 which preserves X-finite X-products and 
~r(x,) = yn for all n E N. We denote by BATh(X) the category of algebraic 
X-theories and X-theory-morphisms. It is easy to see that if.~' is an algebraic 
X-theory and p e B, then ~r is an algebraic Xp-theory. 

Example 1.1.1. The totality of BATh(Xp)'S for allp e B naturally forms 
an X-category, to be called somewhat misleadingly the X-category of algebraic 
X-theories and to be denoted by ~' .ac~(x).  

Let 3 - b e  an algebraic X-theory. We denote by BACat(X; 3-) the 
category of X-functors from 3 to ~'~'~0(X) preserving X-finite X-products 
and their natural X-transformations. The objects of BACat(X; 9-) are called 
3--X-algebras, and the morphisms of BACat(X; 3-) are called J-homomor- 
phisms. The category BACat(X; 3") is called the algebraic category corres- 
ponding to 3?. The notion of being finitely generated (cf. Borceux, 1994, 
Vol. 2, w can be easily Booleanized to yield the notion of being X-finitely 
generated. The full subcategory of X-finitely generated Se-X-algebras of 
BACat(X; ~ )  is denoted by BACatfg(X; 3-). 

Example 1.1.2. The totality of BACat(Xp; 3-[p) 's  for allp ~ B naturally 
forms an X-category, to be called the algebraic X-category corresponding to 
3-and to be denoted by ~'~r 3-). The X-category ~ f g ( X ;  3-) 
is defined similarly. 

Let ~." 3---> S a be an X-theory-morphism of algebraic X-theories. Then 
the assignment 

(p, ,Zd') ~ Ob ~q~.~a2d(X; . ,~  ~ (p, ,Zd'o (~rrp)) a Ob . ~ ' . x ~ ' ( x ;  9"-) 

naturally induces an X-functor from . , ~ ' ( X ;  ,5") to .~'Wa, d(X; .9~), to 
be denoted by .~.~r .it), for which we have the following result: 

Theorem 1.1.3. The X-functor ~L~a2"(X; 9-): . ~ a ~ ( X ;  .5 a) --4 
~'.~lWad(X; .9'-) has an X-left-adjoint. 

Proof. Booleanize Theorem 18.5.3 of Schubert (1972). �9 

1.2. Relations Between Two Booleanized Algebraic Theories 

Let f: X_ --> X+ be an arbitrary morphism in BLoc, which shall be fixed 
throughout this section. 

Example 1.2.1. The f-functor f ~ 0 :  "~'~'td0(X*) --4 ~ '~d0(X_ ) naturally 
induces an f-functor from .~'.~'~(X+) to . , ~ . ~ ( X _ ) ,  to be denoted by 
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Let 3-_+ be an X• theory and 9-an X-theory-morphism from 
~ 3 - +  to ~-_. These entities shall be fixed throughout the remainder of 
this subsection. 

Example 1.2.2. The f-functor f~a,0: ~,~-~Z,Co(X+) ~ ~ ' ~ o ( X - )  naturally 
induces an f-functor 

By Theorem 1.1.3 the X-algebraic functor 

o~: ~ a c ~ z t ( x _ ;  3-_) --4 ~ s c ~ z t ( x _ ;  ~ + )  

has an X-left adjoint 

~ , :  ~ z ~ ' ( x _ ;  t 3 ~ + )  ~ ~ ' s c ~ t ( x _ ;  3-_) 

We denote the composite 5r, o f ~ , r  by f~ ,~[3-_ ,  J+, 5 r] or simply by 

As in Proposition 2.9 of our previous paper (Nishimura, 1995c), we 
have the following result: 

Theorem 1.2.3. The f-functor 

maps X+-finite X+-colimits to X_-colimits. 

2. GROTHENDIECK TOPOSES 

The first two subsections of this section give a review. The reader is 
referred to Makkai and Reyes (1977). 

2.1. Topologies 

The notion of a topology on a topos was introduced by Lawvere and 
Tierney as a generalization of that of Grothendieck topology approximately 
a quarter of a century ago. Let us recall that a topology on a topos E with 
a subobject classifier t: 1 --4 II is a morphism j: 11 --~ II abiding by the 
following identities: 

(2.1.1) j o t  = t 
(2.1.2) j o j  = j  
(2.1.3) j o ^  = ^ o ( j X j )  
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A universal closure operation on E is an assignment to each subobject 
x ---> a of  another subobject .2 --> a (called the closure of x in a) abiding by 
the following conditions: 

(2.1.4) x C . 2  
(2.1.5) I f x  C_ y, then .2 C_ y 
(2.1.6) x = . 2  
(2.1.7) f-l(.2) __ f - l ( x  ) for any morphismf,  b --> a 

It is well known that there is a bijection between the topologies on E 
and the universal closure operations on E, for which the reader is referred 
to Borceux (1994, Vol. 3, Proposition 9.1.3). 

Example 2.1.1. Each topos E with a subobject classifier 1 --> l-I has the 
weakest topology j~, namely, the identity morphism of l l ,  which is called 
the trivial topology on E. Its corresponding universal closure operation assigns 
to each subobject x --> a of  itself. 

A topos endowed with a topology is called a localized topos. Let 
(E, j )  be a localized topos. A subobject x ---> a is said to be dense if .2 = a. 
An object b of E is called a j-sheaf if for any dense subobject s: x ---> a and 
any morphismf:  x --> b there exists a unique morphism g: a --> b such that 
f = g o s. The full subcategory of  E whose objects are all j-sheaves is 
denoted by Sh(E, j ) ,  for which the following associated sheaf functor theorem 
is fundamental. 

Theorem 2.1.2. The inclusion functor ij: Sh (E , j )  --> E has a left adjoint 
aj: E l> Sh(E, j ) ,  which is left exact. The category Sh(E, j )  is a topos. 
Therefore the pair (ij, aj) forms a geometric morphism from Sh(E, j )  to E. 

For a proof of  the above theorem, the reader is referred to Borceux 
(1994, Vol. 3, Theorems 9.2.10, 9.2.11, and 9.3.8). 

A geometric morphism to = (to., to*): E_ --> E+ is said to be prelocalized 
if both of  the toposes E+ are localized (with topologies j+). A prelocalized 
geometric morphism to = (tO., tO*): (E_ , j_ )  --> (E+,j+) is said to be localized 
if tO* satisfies the following condition: 

(2.1.8) tO*2 C_ tO*x for any subobject x --> a in E+. 

Example 2.1.3. For each localized topos (E, j ) ,  the pair (IE, IF.) with IE 
the identity functor of  E is a localized geometric morphism from (E, j )  to 
(E, JE), where JE is the trivial topology on E discussed in Example 2.1.1. 

Theorem 2.1.4. Let tO = (tO., tO*): (E_, j_)  ---> (E+, j+) be a localized 
geometric morphism. Then tO, preserves sheaves. That is, x e Ob Sh(E_, 



Logical Quantization of Differential Geometry 13 

j_) always implies q~,x e Ob ShoE§ j§ so that q~, induces a functor ~ , :  
SHOE_, j_) ---> ShoE+, j+) by restriction. 

Proof. If  s: x ---> a is a dense monic in E+, then q~*: q0*x ---> q~*a is also 
a dense monic in E_, for q~* is left exact and q~ is localized. Since q~* q q~,, 
the following square is commutative for each b ~ Ob E_: 

E+(a, ~,b) ~- E_ (q~*a, b) 

E+(s, tp,b) ~ ~ E_(~*s, b) 

E+(x, q~,b) ~- E_(~p*x, b) 

Thus, if b is a j_-sheaf so that E_(~p*s, b) is bijective, then E+(s, ~p,b) is 
also bijective. Therefore we are sure that q~,b ~ Ob ShoE+, j+) whenever b 
E Ob ShoE_, j_). �9 

Theorem 2.1.5. Let q~ = (~p,, q~*): OE_, j_) ---> OE+, j+) be a localized 
geometric morphism. Then the functor 

ff~* = aj_ o q~* o ij+: Sh(E+,j+) ----> ShoE_, j_) 

is left exact and is left adjoint to the functor ~ , :  ShoE_, j_) ---> ShoE+, j+). 
Therefore the pair ~ = (~, ,  q~*) constitutes a geometric morphism from 
ShoE_, j_)  to ShoE+, j+). 

Proof. The functor ~* is surely left exact, since all of ay_, q~*, and ij+ 
are left exact. Let x e Ob ShoE+,j+) and y ~ Ob ShoE_, j_). Then we have 

Sh(E~, j_)(Cp*x, y) = ShoE_, j - ) ( ( a j _  o q~* o ij+)x, y) 

E_((tp* o iy+)x, ij_y) 

_--_-----_ E+(iy+x, (q~, o ij_)y) 

ShoE+, j+)(x, (ay+ ~ q~, ~ ij_)y) 

= ShoE+, j+)(x, (p,y) 

Therefore ~* -t ~ , .  �9 

Theorem 2.1.6. Let q~ = (q~,, q~*): (El , j l )  ---> (E2,j2) and ~ = (~, ,  ~*): 
(E2, j2) ""> (E3, J3) be localized geometric morphisms. Let X = ~ o ~p, so that 
•  = d~, o q~, and • = q~* o t~*. Then ~ = ~ o ~ up to isomorphic conjugates. 
In particular, R* = 9 "  ~ ~* up to natural isomorphisms. 

Proof. By the very definitions of ~ , ,  t~,, and ~ ,  under Theorem 2.1.4, 
we have ~ ,  = t~, o ~ , .  Since the left-adjoint of a functor, if it exists, is 
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determined uniquely up to natural isomorphisms (MacLane, 1971, Chapter 
IV. w 1, Corollary 1 of Theorem 2), the desired conclusion follows readily. �9 

As a corollary of this theorem, we have the following result. 

Theorem 2.1.7. Let 0 = (0,, 0"): (E_, j_) ---> (E+, j+) be a localized 
geometric morphism. Then the functors aj_ o 0* and aj_ o 0* o ij+ o aj+ from 
(E+, j+) to Sh(E_, j_) are naturally isomorphic. 

Proof. By taking (0,, 0"): (E_, j_)  ---> (E+, j+) and (I~.+, I~+): (E§ j§ 
--> (E§ j~+) for (tp,, q~*): (El, jl) --> (E2, J2) and (~, ,  t~*): (E2, j2) ---> (E3, 
J3), respectively, in the above theorem, we get the desired result. �9 

2.2. Grothendieck Topologies 

Recall that a Grothendieck topology on a category C is an assignment 
L to each a e Ob C of a family L(a) of subfunctors of C(?, a) yielding the 
following conditions: 

(2.2.1) 
(2.2.2) 

C(?, a) ~ L(a). 
Let f: b ---> a be a morphism of C. Let R and Rf be subfunctors 
of C(?, a) and C(?, b) respectively. If the square 

R/ >R 

1 1 
C(?, b) > C(?, a) 

C(? , f )  

(2.2.3) 
is a pullback diagram and R e L(a), then R / e  L(b). 
Let a e Ob C, R a subfunctor of C(?, a), and S e L(a). If 
for any b ~ Ob C and any f .  b ---> a ~ Sb we have Ry e L(b) 
with R/being defined as in (2.2.2), then we have R ~ L(a). 

A subfunctor R of C(?, a) for some a e Ob C is usually identified with 
a sieve on a, which is by definition a set of morphismsfof  C with codomain 
a which is closed under the right composition. Given a Grothendieck topology 
L on C and a ~ Ob C, a set S of morphisms of C with codomain a is said 
to L-covera  if Siv(S) = {g: b ---> a e Mor CIg = f o  h for s o m e f  ~ S and 
some h e Mor C} e L(a). The totality of sets of morphisms of C with 
codomain a which L-cover a is denoted by CovL(a). 

The following well-known theorem signifies that the notion of a topology 
on a topos is a good generalization of a Grothendieck topology on a category. 
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Theorem 2.2.1. Let C be a small1 category. Then there is a bijection 
between the topologies on the topos PreSh(C) and the Grothendieck topolo- 
gies on the category C. 

For a proof of the above theorem the reader is referred, e.g., to Proposition 
9.1.2 of Borceux (1994, Vol. 3). A pair (C, L) of a small1 category C and a 
Grothendieck topology L on C is called a site. For a site (C, L), the topology 
on PreSh(C) corresponding to the Grothendieck topology L under Theorem 
2.2.1 is denoted by j [L]  and the topos Sh(PreSh(C), j [L])  is denoted by 
Sh(C, L). For X e PreSh(C) and a subfunctor Y of X, the closure Y of Y 
in X with respect to the topology j [L] can be calculated as follows: 

(2.2.4) For each a e Ob C, Ya consists of all x e Xa such that 
r Y) = {f. b ---) a ~ Mor C IXf(x) ~ Yb} ~ L(a) 

For a site (C, L) it is easy to see the following result. 

Lemma 2.2.2. Let a ~ Ob C and S be a subfunctor of C(?, a). Then S 
L(a) iff id(a) E Sa. 

Proof. We note that 

S = {f. b ---) a e Mor C]C(f,  A)(id(a)) ~ Sb} = r S) 

since Cff, a)((id(a)) = f ,  which establishes the desired result forthwith. �9 

Corolla_ry 2.2.3. Let a and S be the same as in Lemma 2.2.2. Then S 
L(a) iff S = C(?, a). 

Proof. This follows from the above lemma and the simple fact that for 
any subfunctor T of  C(?, a), T = C(?, a) iff id(a) ~ T. �9 

It is also easy to see the following. 

Lemma 2.2.4. Let F: D ---> P:ebll(C) be a functor, X E Ob PreSh(C), 
Y be a subfunctor of  X, and ~: F ---> (X)D be a colimit. Let Fv be the functor 
from D to PreSh(C) such that Fv(d) = tr(d)-l(Y) for any d E Ob D and 
the diagram 

Fvd I ) Fd I 
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is commutative for any f: dt --~ d2 E Mor D. Then the natural transformation 
try: Fv ~ (Y)D making the square 

O'v(d) 
Fvd ) Y 

1 l 
Fd > X 

or(d) 

a pullback diagram for any d ~ Ob D is a colimit. Simply by replacing Y 
by Y in the above definitions of F v and cry, we get a functor F~,: D 
PreSh(C) and a colimit ~r~,: F~ ~ (Y)D- Then Fv(d) is dense in F~(d) and 
F~,(d) is closed in F(d) for any d E Ob D. �9 

Theorem 2.2.5. Let F: C§ --> C_ be a left-exact functor of small~ catego- 
ries with C+ being finitely complete. Then the functor ~p,[F]: PreSh(C_) 
PreSh(C§ assigning to each X ~ Ob PreSh(C_) of X o F e Ob PreSh(C+) 
and assigning to each -r ~ Mor PreSh(C_) of x o F ~ Mor PreSh(C§ has 
a left adjoint q~*[F]: PreSh(C+) ---> PreSh(C_), which is left exact. 

Proof. See Theorem 17.1.6 of Schubert (1972). �9 

A left-exact functor F: C+ ---> C_ of smalll categories with C+ being 
finitely complete is called a topological functor if the categories C+ are 
endowed with Grothendieck topologies L+, respectively. In this case we 
preferably write F: (C+, L+) --> (C_, L_). A topological functor F: (C+, L+) 
---> (C_, L_) is said to be continuous if S ~ CovL+(a). 

Let. F: (C+, L+) ---> (C_, L_) be a topological functor, which shall be 
fixed throughout the remainder of this subsection. 

Lemma 2.2.6. Let a E Ob C+ and S be a subfunctor of C+(?, a). Then 
q0*[F](S) = Siv(FS). 

Proof. This follows easily from a pointwise formula for Kan extension 
such as formula (10) of MacLane (1971, Chapter X, w �9 

Theorem 2.2.7. The prelocalized geometric morphism 

(q~.[F], q~*[F]): (PreSh(C_), j [L_]) ~ (PreSh(C§ j[L+]) 

is localized iff for any a ~ Ob C§ and any subfunctor S of C(?, a), S = 
C+(?, a) implies ~p*[F](S) = C_(?, Fa). 

Proof. The only-if part is obvious. To see the if part,let X E PreSh(C+) 
and Y be a subfunctor of X. We must show that q~*[F]Y C t0*[F]Y, where 
Y denotes the closure of Y in X and q~*[F]Y denotes the closure of q0*[F]Y 
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in q~*[F]X. We can and indeed do assume without loss of generality that Y 
is dense in X, so that we have to show that q0*[F]Y is dense in ~o*[F]X. 
Since the Yoneda embedding y: C+ ~ PreSh(C+) is a dense functor by 
Corollary 3 of MacLane (1971, Chapter X, w and the functor q~* [F] preserves 
arbitrary colimits and finite limits, Lemma 2.2.4 guarantees the desired general 
statement to be reducible to the special case that X is of the form C+(?, a) 
for some a e Ob C+. This completes the proof. �9 

Theorem 2.2.8. The prelocalized geometric morphism 

(9,[F],  ~*[F]): (PreSh(C_), j [L_])  -~ (PreSh(C+), j[L+]) 

is localized iff the topological functor F: (C+, L+) --~ (C_, L_) is continuous. 

Proof. This follows readily from Corollary 2.2.3, Lemma 2.2.6, and 
Theorem 2.2.7. �9 

2.3. The Booleanization of Topologies 

Let X be a Boolean locale with B = ~ (X) ,  which shall be fixed 
throughout this subsection. Recall that an X-category ~ is called an X-topos 
if its 1-slice g'[1] is a topos, in which it is easy to see that ~"[p] is a topos 
for each p a B and that if we denote by ~ a subobject classifier of g~[l], 
then 1-/[-p is a subobject classifier of g~[p] for each p ~ B. 

An X-topos g~ shall be fixed throughout the remainder of this subsection. 
An X-topology on g" is a topology,/  on the topos ~[1], which naturally 
induces a topology i Fp on g" [p] for each p ~ B. The ordered pair (~,  ~" ) 
is called a localized X-topos. An X-universal closure operation on g' is a 
universal closure operation on g'[1], which naturally induces a universal 
closure operation on g'[p] for each p e B such that for each subobject s: x 
---> a of g'[1] and eachp ~ B, .~ Fp = x [-p. The well-known bijection between 
the topologies and the universal closure operations on a topos naturally implies 
a bijection on the X-topologies and the X-universal closure operations on 
the X-topos g'. 

Let ~" be a topology on ~. The totality of Sh(g'[p], ~'[p]) for all p 
B is easily seeri to form an X-subcategory of ~, which is an X-topos and is 
denoted by S~(  g~, / ) .  By simply Booleanizing Theorem 2.1.2, we have the 
following result. 

Theorem 2.3.1. Let (8", ,/' ) be a localized X-topos. Then the inclusion 
X-functor ~,.: S '~(~,  i ) ---> g' has an X-left-adjoint a,/: g' ---> S '~(~,  ,/ '), 
which is left X-exact. 
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2.4. The Booleanization of  Grothendieck Topologies 

Let X be a Boolean locale with ~ ( X )  = B, which shall be fixed through- 
out this subsection. A Grothendieck X-topology on a smalll X-category ~' is 
an X-function S a from Ob W to Ob ~g'~,~(X) abiding by the following 
conditions: 

(2.4.1) For each a e Ob W, every element of  .~(a)  is a partial X ~ -  
subfunctor of  Wx(?, a). 

(2.4.2) ~x(? ,  a) e _W(a). 
(2.4.3) Let f :  b ---> a ~ Mor W. Let ,.~ and ,9~'f be X~-subfunctors of  

Wx (?, a) and Wx (?, b), respectively. If the square 

~,x(?, b) > ~,x(?, a) 

~x (? , f )  

is a pullback diagram of ~'~,zd l(X)[Ea] and #2' e .Z~(a), then 
~':  ~ _~(b). 

(2.4.4) Let a ~ Ob ~,  ~ be an XE:subfunctor of  ~x(? ,  a), and total 
S ~ e _~(a). If for any b ~ Ob ~ and any f:  b -+ a ~ Sb we 
have J/'f ~ .L:a(b) with ,9/'f being defined as in (2.4.3), then we 
have ~/' ~ .g:(a). 

An XEa-subfunctor ~ '  of  ~,x(?, a) for some a e Ob C is usually identified 
with an XE:sieve on fz, which is by definition an XEa-set ___~ consisting of  
morphisms of ~:  

(2.4.5) For each f ~ ~_, the codomain o f f  is a [-p for some p -- Ea. 
(2.4.6) The underlying set of  the XE:set  ___~ is a sieve on a. 

In the sequel the XEa-subfunctor of  ~x(? ,  a) ~ and its corresponding 
XE:sieve ~___ on a are identified, so that ~2' is denoted simply by the same 
symbol ~gL 

By simply Booleanizing Theorem 2.2. l, we have the following result. 

Theorem 2.4.1. Let ~' be a smalll X-category. Then there is a bijection 
between the X-topologies on the X-topos ~ ' ~ ( X ;  ~ )  and the Grothen- 
dieck X-topologies on the X-category ~'. 

A pair (~', S : )  of a smalll X-category ~' and a Grothendieck topology 
Saon ~ is called an X-site. For an X-site (~, .g:), the topology on ~ S ' ~ ( X ;  
~ )  corresponding to the Grothendieck X-topology .EF under Theorem 2.4. l 
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is denoted b y t  [_9 ~] and the X-topos S,~(X; , .~ed~f(~),  i [_~]) is denoted 
by c~f(X; ,~, _9~). 

2.5. Relations Between Two Booleanized Grothendieck Toposes 

Let f: X_ --> X+ be a morphism of BLoc, which shall be fixed throughout 
this subsection. 

Theorem 2.5.1. Given small~ X,-_-sets T+_, there is a bijection between 
the f-functions from ~+ to 5v_ and the X_-functions from f* ~'P+ to ~v-. 

Proof. It is easy to see that there is a bijection between the f-functions 
from g'~. to 7/_ and the morphisms from f* 7/+ to 7. 7_ in the category BEns~(X). 
The adjunction from BEnsl(X) to BEnst(X) discussed in Nishimura (1995b, 
Theorem 1.2) gives a bijection BEnsl(X)(_f* ~+, 7L) ~ BEnst(X)(f* ~+, 
~"_). Therefore the desired conclusion follows. �9 

By the same token, we have the following result. 

Theorem 2.5.2. Given smalll X• ~_+, there is a bijection 
between the f-functions from ~+ to ~'_ and the X_-functors from f*~+ to ~_ .  

The X_-functor corresponding to an f-functor .37.' ~+ ~ ~'_ in the above 
theorem is denoted by Jx_ ,  while the f-functor corresponding to an X_- 
functor ~w: f*~+ ___> ff_ under the above theorem is denoted by .~f. 

It is easy to see the following. 

Lemma 2.5.3. For any f-functor ~--: ff+ ---> ~_ ,  any X+-functor ,,~: _@'+ 
--> ~+, and any X_-functor ~ :  ~_ ---> .@'_, we have (,y{o 3-0 Z/)x_ = ~ , o  
Y-x_ ~ f*'~. 

Example 2.5.4. Let ~+ be a small~ X+-category. The assignment 

.X( E Ob ~L@~S~C(X+; ~'+) ~ f*~ ~ Ob ~'~S'~'(X_; f*~+) 

naturally induces an f-functor, which is to be dcnoted by ~*~,.~,~,[~+]. For any 
x e Ob ff such that Ed',q; / = Ex, (f*~j~[~'+]~')(f*x) = f*(3f/x). 

Theorem 2.5.5. In the above example, the f-functor f.~.<.wr[~' +] maps 
smallt X+-colimits to X_-colimits and maps small~ X+-limits to X_-limits. 

Proof. The Booleanization of Schubert (1972, Itcm 8.5.1) guarantees 
G * that X+-colimits in ~'~.5')f(X+; ~+) and X_-colimits in ~'..~z~ c~f(X_; f W+) 

can be computed componentwise. Since * ~.,, maps small~ X+-colimits to 

X_-colimits, the desircd first half of the theorem follows. The remaining half 
of the theorem can be dealt with similarly. �9 
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Theorem 2.5.6. Let 3-be  an f-functor from a small~ X§ ~+ 
to a small,-X_-complete X_-category ~ _ .  Then there is, up to natural f- 
isomorphisms, a unique f-functor if: ~ S ~ ( X §  ~'§ ----> ~ _  mapping 
small~ X+-colimits to X_-colimits and making the following diagram 
commutative: 

v'+) ) 

Proof. The uniqueness part is obvious, since every object of 
~ ' ~ 9 ~ ( X §  c~§ is an X§ of the image of a small~ partial X§ 
diagram in ~§ under the Yoneda embedding y. By Booleanizing MacLane 
and Moerdijk (1992, Chapter I, w Corollary 4 of Theorem 2), we can see 
that there is an X_-functor ~ preserving small~ X_-colimits and making 
the diagram 

X 

y* 

commutative. The desired ~' can be obtained as ~,(o f..~s,~[~'§ �9 

Theorem 2.5.7. Let ~-be an f-functor from a small~ X§ ff  to 
a small~ X_-category c~_. Then there is, up to natural f-isomorphisms, a 
unique f-functor ~r*[~]: ~ ' ~ ( X §  ~'§ ~ ~ ( X _ ;  ~_)  mapping 
small~ X§ to X_-colimits and making the following diagram 
commutative: 

> 

Proof. Take ~ ' ~ ( X _ ;  ~'_) for ..~_ and y* o~." ~'+ --> ~ S ~ ( X _ ,  
~_)  for ~." ~§ ---> ~ _  in the above theorem. �9 

Example 2.5.8. In the case that X§ = X_ (which we denote by X) and 
f is the identity functor of X, ~." ~'+ ~ ~'_ in the above theorem is an X- 
functor. Therefore, under the additional assumption that the X-category ~'+ 
is X-finitely X-complete and 5ris X-left-exact, we have 
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~-[Sr] = (.n-,[Srl, .rr*[.gr]): ~ S C t ' ( x ;  ~_)  ~ ~ 5 r  ~§ 

with ~r,[5 r] consisting of the assignments 

~ Ob ~ 5 r 1 6 2  ~'+) - ~' o (5rl-E~") ~ Ob ~ ' ~ 5 r  ~_)  

and 

or e Mor ,~ '~Sr  ~'+) ~ cr o (~,~'~Ecr) e Mor ~ '~SCg(X;  ~'_) 

is an X-geometric morphism. This is only a Booleanization of Theorem 
2.2.5. �9 

Theorem 2.5.9. Let g: X ---> X2 and h: X2 ---> X3 be morphisms of BLoc. 
Let ge: ~2 ""> ~'u be a smalln g-functor and ~ .  ~'3 --> ~2 be a smalln h-functor. 
Then the h o g-functors "rr*[~' o ~ and "tr*[~] o "rr*[,,~ from ~'~-~SCg 
(X3; if'3) to ~ L ~ 5 ~ ( X t ;  T~) are naturally h o g-isomorphic. 

Proof. Consider the following diagram: 
-tr*[,,Yr -rr*[~] 

~ s r 1 6 2  ~ )  

,,W ~e 

The commutativity of the two inner squares implies the commutativity of the 
outer rectangle, so that "rr*[g e o , ,~ ~hog "tr*[ff] o "rr*[,gl], as was desired. �9 

Theorem 2.5.10. In Theorem 2.5.7, if we assume also that ~'§ is X+- 
finitely X+-cocomplete and that ~ maps X+-finite X§ to X_-colim- 
its, then the f-functor vr*[Sr]: ~ 5 9 r  ~'§ ~ ,~'~SCg(X_; ~'_) maps 
X+-finite X+-limits to X_-limits. 

Proof. By FOTP the assumption that cE+ is X+-finitely X+-complete 
implies that f*cE§ is X_-finitely X_-complete. By FOTP again the assumption 
that 5 r maps X+-finite X+-colimits to X_-colimits implies that the X_- 
functor 9-x_: f*~'§ ---> ~'- preserves X_-finite X_-colimits. Thus the Booleani- 
zation of Theorem 2.2.5 implies that the X_-functor ~r*[3-x_]: f*~§ ---> ~'- 
preserves X_-finite X_-limits. Since 7r*[,~] = ~r*[~x_] o f~sct [~ '+]  and 
f.:~,~t[~'§ maps X§ X+-limits to X_-limits by Theorem 2.5.5, the 
desired conclusion follows. �9 

An f-left-exact f-functor 5r-: ~'§ ---> ~_ of smallt X• ~'_+ with 
~§ being X+-finitely X§ and ~'• being endowed with Grothendieck 
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X._-topologies ~ is called an f-topological f-functor from the X§ (~'+, 
.~+) to the X_-site (g%, _9'_). An f-topological f-functor 9-: (~+, .2"§ --+ (g%, 
_9"_) is said to be f-continuous if for any a e Ob g% and any total 5" e 
Sa+(a), the minimal X_,E~a-sieve on ~-a containing o~-S a belongs to .g~_(~-a). 
Each f-topological f-functor ~." (g%, _9'+) --+ (go_, ..ga_) gives rise to its 
associated fofunctor 

~r*[~ S"+, .9'_] 
= a~e_ ~ "rr*[a r] o a'.~+: ~S~(X+; ~'+, ..9"§ ~ ,.~c~(X_; ~'_, .2'_) 

Let ~ :  (g%, _ga§ __+ (g~_, .go_) be an f-continuous f-topological f-functor. 
By FOTP it is easy to see the following. 

l_emma 2.5.11. The X_-category f % q ~ S ~ ( X + ;  ~+) can naturally be 
put down as an X_-subcategory of X_-category ~L~eS'~(X_; g~_) with a 
natural injection 

W+]: f * ~ ' ~ s a ' ( x §  ~.) --~ ~..~ea~C(x_; ~_) 

and the following diagram is commutative up to natural X_-isomorphisms: 

~*[]x_] 

I ~ W.] 
f*~'~.~aa'(x+; ~§ 

We denote by f ,  ga§ the minimal Grothendieck X_-topology on the X_- 
category f*g~§ such that the f-functor consisting of the assignments x ~ Ob 
g~+ ~ f*x ~ Ob f'g% andf  ~ Mor ~'§ ~ f*f  e Mor f 'g% is an f-continuous 
f-topological f-functor from (cg§ _ga+) to (f*~+, f*.g~'+). 

Lemma 2.5.12. The X_-category f*~S~(X+;  W§ _9"+) can naturally be 
put down as an X_-subcategory of the X_-category ,.~,.9~(X_; f*g~§ f*.9'+) 
with a natural injection 

W§ ~§ f*~c,~(x. ;  ~'§ _%) ~ ~ ( x _ ;  f*~§ f*.~§ 

and the following diagram is commutative up to natural X_-isomorphisms: 
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a ta_~ + 
~sa'(x_; f*~§ f*.~+) ( ~ ,~se f (x_ ;  ~*~",3 

~*,.~(x§ ~'§ ..,%) ( f*,.~',.~..9~C(x+; ~'3 
f'a_% 

Proof We can use a Booleanized version of  the colimit construction of  
in Borceux (1994, Vol. 3, w for computing aSe+ and a f,~e§ Thus the 

desired result follows readily from Theorem 2.5.5. �9 

The proof of the above lemma shows also the following result. 

Lemma 2.5.13. The following diagram is commutative up to natural 
X_-isomorphisms: 

~ s , ~ ' ( x _ ;  f*~§ ~,s,~r f*~'+, f*_~+) 

[~'§ ~ [~'§247 

Theorem 2.5.14. The f-functors a .~_ o ~*[~9"] and aS,'_ ~ ar*[~ qr] ~ 

~ +  o a_o_w+ from ~qLg)f(X+; ~'+, _ow+) to ~gg)f(X_; ~'_, .~_) are naturally 
f-isomorphic. 

Proof On the basis of  Theorem 2.5.2 it suffices to show that X_-functors 

(a..,q,,_ o ,rr*[o~r])x_ and (a_~_ o ar*[9-] o~,,+ o a.~+)x_ are naturally X_- 

isomorphic. On the basis of  Lemma 2.5.3 we have (a .~_ o ~r*[~])x_ = 

a.~_ o "rr*[~r])x_ and 

( a ~ _  o ,rr*[Sr] o ~X~+ ~ a~+)x_  = a.~_ o 'rr*[Sr]x_ o f * ( ~ +  o a_~+) 

= a 2  - o ,u*[~r]x_ o f * ~ +  o f ~ +  
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Since 5rx_: f*~+ ~ ~"_ is X_-left-exact with f*~'+ being X_-finitely X_- 
complete, 

r 

= Or,[~rx_], ~'*[Srx_]): ~ ' ~ ' e d ~ ( X _ ;  ~'_) ~ ~ ' ~ S ' ) r  f*~+) 

is an X_-geometric morphism. Therefore the Booleanization of  Theorem 

2.1.7 guarantees that X_-functors a.~_ o ~r*[~rx_] o/e,~e+ ~ a e,z+ and 

a.~_ o "rr*[9-x_] are naturally X_-isomorphic. Therefore we have 

aS,'_ o ar*[~']x_ o f * ~ +  o f 'as , '+  

~ x _ a 2  - o ,rr*[,.ff'x_ ] o 5 [ ,~+] o f*~v+ o f*a.~+ (Lemma 2.5.1 I) 

~ x _ a  ~_ o ,rr*[,~rx_] o/t*2+ o ~ [~'+, .~+] o f*a.~+ (Lemma 2.5.13) 

~x_aLS~ - o ar*[3-x_] o/t*.~+ o at*S,'+ o .~ [~ '+]  (Lemma 2.5.I2) 

----x-~_~_ o ~r*[~rx_ ] o a [fe+] 

(Booleanization of  Theorem 2.1.7) 

mx_a_~_ ~ "rr*[9-]x_ (Lemma 2.5.11) 

Thus the desired result follows at once. �9 

Theorem 2.5.15. Let g: XI ---> X2 and h: X2 ---> X3 be morphisms of 
BLoc. Let if: (~2, Sr --> (~'l, --qP0 be a g-continuous g-topological g-functor 
and ,,~: (~3, -~3) --~ (~:~2, -~2) an h-continuous h-topological h-functor. Then 
the h o g-functors ~r*[~' o ,,W; ~3, ~ l )  and ~r*[~'; -~2, -~1] ~ -rr*[,r ~3,  -~2] 
from ~qR~(X3; ~3, - ~ )  to ~7'~'(X~; ~ ,  ..~) are naturally h o g-isomorphic. 

Proof. It suffices to note that 

r  -~2, - ~ d  ~ r  _~, _~21 

=~--~1 o ' IT*[,~] o ~ 2  o ~--~2 o ,IT:'Ir ~] o ~:~3 

~hog ~--~1 o TI'*[ ~ ~'] o ,/l'*[,r '] o t ~ 3  (Theorem 2.5.14) 

~h*g ~Se~ ~ -tr*[~' o ,gO'] o ~ '3 (Theorem 2.5.9) 

= ~r*[g' o g ; - ~ 3 ,  S~ �9 



Logical Quantization of Differential Geometry 25 

3. EMPIRICAL GROTHENDIECK TOPOSES 

Let ~'~ be a manual of Boolean locales, which shall be fixed throughout 
this section. We assume that the reader is appreciably familiar with Section 
3 of our previous paper (Nishimura, 1995c). In particular, he or she should 
feel at home with such a locution as an "empirical framework over ~ld." 

3.1. Empirical Algebraic Theories 

The assignments X e Ob ~ ~ (X, ~ '~r  and f e Mor ~ ,-, 
(s ~ )  constitute an empirical framework over ~R to be denoted by 
~923~)[~R] or simply by ~923~. The objects of EObj(~9.13~) are called 
empirical algebraic theories over ~02. 

Let 3 be an empirical algebraic theory over ~ .  The assignments 

X e Ob ~ ~ (X,~'~C:~zt(X; 3~;.(X))) 

and 

f: X ~ Y e Mor ~[R ~ (f, f~,-e~,[3a$.(X), 3~.(Y), 3~;.(f)]) 

constitute an empirical framework over ~9~ to be denoted by ~9~ffaf[~lR; 3]  
or simply by ~ a f [ 3 ] .  The objects of the category EObj(~gJ~a t [3] )  are 
called empirical 3-algebras over ~IR. The assignments 

X �9 Ob ~ ~ (X,~c~zg'fg(X; ~$.(X))) 

and 

f: X --> e Y Mor ~ ,-* (L f,~c~fg[3~.(X), 3~.(Y), 3~.(f)]) 

constitute an empirical framework over ~-~ to be denoted by ~9/~at fg[~;  3]  
or simply by ~r 

Example 3.1.1. Since each f: X --> Y ~ Mor ~92 naturally enables us to 
regard f*3-~,(Y) as an X-subcategory of ~ , ( X ) ,  the assignment X ~ Ob 
~,R , - ,  (X, ~'~r ~ , ( X ) )  gives rise to an empirical algebraic theory 
over ~ to be denoted by 3~.~n~[~] and to be called an empirical ring theory 
over ~tR. An object of EObj(~gd~at[3~a~[~R]])  is called an empirical ring 
over ~ .  �9 

Example 3.1.2. Let ~ be an empirical ring over ~R. Since each t: X --~ 
Y ~ Mot ~R naturally gives rise to a morphism from f*J,J~v-~a~,~(Y) to 
~.,nx-~,~(X) in the X-category ~'5~'~)~(X), the assignment X ~ Ob ~ 
(X, ~'~r ~7.~x-~(X)) gives rise to an empirical algebraic theory over 

to be denoted by 3,~-9~ta[~] and to be called an empirical theory of ~ -  



26 Nishimura 

algebras over ~92. An object of EObj(@~ctt[~9~-~tt~[N]]) is called an 
empirical ~R-algebra over N .  

Example 3.1.3. Since each f: X --~ Y a Mor ~ naturally gives rise to 
a morphism from f * : - ~ ( Y )  to ~ . - ~  (X) in the X-category~.q~'.~c'.fi~'(X), the 
assignment X ~ Ob ~ ,-, (X, ..~.ac~O'/~(X), 3 - ~  (X)) gives rise to an empirical 
algebraic theory over ~ to be denoted by :~.~tca[N] and to be called an 
empirical theory of smooth algebras over ~ .  An object of EObj(@9.1~ctt 
[~,,,~t~[~]]) is called an empirical smooth algebra over ~J~. 

3.2. Empirical Grothendieck Toposes 

An N-site is a pair (~, ~.) of an empirical framework ~ over N and an 
assignment ~ to each X ~ Ob N of a Grothendieck topology ~(X) on the X- 
category r yielding the following conditions: 

(3.2.1) For each X ~ Ob N ,  the X-category ~e,c(X) is X-finitely 
X-complete. 

(3.2.2) For each f: X ---) Y ~ Mor N ,  the f-functor ~,r ~e.,(Y) 
r is f-left-exact. 

(3.2.3) For each f a Mor N ,  the f-topological f-functor cD~(f): 
(~e,c(Y), ,.(Y)) --~ (~e,c(X), ~(X)) is f-continuous. 

Given an N-site (~, 0, the Grothendieck X-topos associated with 
(~, ~) is an empirical framework ~ ) ( ~ 9 2 ;  (D, ,.) over N with ~ ,  assigning 
to each X ~ Ob N of the X-category ~ ( X ;  cDX, ~(X)) and to each f: 
X ~ Y ~ Mor N of the f-functor 

.rr*[cl, f; ~(Y), ~(X)]: ~'S,~'(Y; ~Y, L(Y)) ~ ~ ' :~ ' (X; ,l,X, L(X)) 

The objects of E O b j ( ~ ( ~ ;  ~, ~.)) are called empirical sheaves over (cD, ~). 

Example 3.2.1. Let ~R be an empirical ring over N ,  we denote by 
I,~.~Bar the assignment 

X e Ob Mor N ,-, ~.,~tx)..~_~[X] 

It is easy to see that the pair (@92ffaffg(N; ~_~,~[.q)op, Lg~-~;qar) is an N-site. 
Its resulting Grothendieck N-topos 

~ ( N ;  @gA~atfg(~g~; ~9~_~,~t~) ~ ~:~-ce~q,~) 

is called the Zariski N-topos over ~ .  

Example 3.2.2. We denote by t,~,~-qar the assignment X ~ Ob N 
S:~v~,~[X]. It is easy to see that the pair (~g5[~atfg(N; ~e .~ i , )  ~ Les,.;~a~) 
is an N-site. Its resulting Grothendieck N-topos 
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~t~(~; ~g2~atfg(~; ~ ) o p ,  t~,~) 
is called the smooth Zariski ~-topos. �9 

A P P E N D I X :  MISCELLANEOUS EXAMPLES 

Let k be an arbitrary small0 ring, which shall be fixed throughout the 
succeeding two examples. We first give an example of an algebraic theory 
in Lawvere's (1963) form. For treatments of algebraic theories ~ la Lawvere 
(1963) the reader is referred to Borceux (1994, Vol. 2, w and Schubert 
(1972, w as well as Lawvere's (1963) epoch-making dissertation. 

Example A. 1. The algebraic theory Tang has N as its set of objects. Given 
n, m ~ N, its morphisms from n to m are all m-tuples of polynomial functions 
of n variables with coefficients in Z. Note that each n ~ N is an nth power 
of 1 in the category TR.r The algebraic category ACat(TR, g) corresponding 
to TRug consists of all finite-products-preserving functors from T~g to Enso 
and natural transformations among them. It is equivalent to the category of 
small0 rings and homomorphisms of rings in the standard sense, so that these 
two categories are naively identified unless confusion may arise. 

A small0 ring k shall be fixed for the following two examples. 

Example A.2. The algebraic theory Tt-Aig has N as its set of objects. 
Given n, m ~ N, its morphisms from n to m are all m-tuples of polynomial 
functions of n variables with coefficients in k. Note that each n E N is an 
nth power of 1 in the category Tk_Aig. The algebraic category ACat(Tk.Aig) 
corresponding to Tk.Aig consists of all finite-products-preserving functors from 
Tt-Alg to Enso and natural transformations .among them. It is equivalent to 
the category of smallo k-algebras and homomorphisms of k-algebras in the 
standard sense, so that these two categories are naively identified unless 
confusion may arise. The full subcategory of ACat(Tt_AJg) whose objects are 
all finitely generated k-algebras is denoted by ACatfg(Tt.Alg). If an object A 
of ACatfg(Tk_Al~) is to be regarded as an object of ACatfg(Tk_Atz) ~ then it is 
denoted b y / ( A ) .  Similarly, if a morphism f. A --> B of ACatfg(Tk.Ajg) is to 
be regarded as a morphism from / ( B )  to / ( A )  of the category 
ACatfg(Tk_Alg) ~ it is denoted b y / ( f ) .  

Example A.3. The minimal Grothendieck topology Lk.zar over 
ACahg(Tk.Atg) ~ such that for any finitely generated k-algebra A and any finite 
elements al . . . . .  an of A with 1 ~ (at . . . . .  an) the family {/(pi): / 
(A[aTl]) --> /(A)}7=1 with Pi: A --> A[ai -l] being the canonical projection 
for each i (1 < i -- n) Lk_zar-covers/(,4) is called the Zariski topology over 
k. The Grothendieck topos Ek-zar associated with the site (ACatfg(Tk.Alg) ~ 
Lk-Zar) is called the Zariski topos over k. 
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Example A.4. The algebraic theory TSAig has R"'s (n ~ N) as its objects. 
The morphisms from R n to R m are all smooth functions from R ~ to R m. The 
objects of the algebraic category ACat(TsAig) corresponding to TSAIg are all 
finite-products-preserving functors from TSAIg tO Ens0 and are called smooth 
algebras, which Moerdijk and Reyes (1991) called C~-rings. The morphisms 
of ACat(TsAig) are simply all natural transformations among them. The full 
subcategory ACatfg(TsAig ) of ACatfg(TsAig) and an operation f :  ACatfg(TsAig) 
---> ACatfg(TsAlg) ~ are defined as in Example A.2. 

Example A.5. The smooth Zariski topology Lszar is defined as in Example 
A.3 to be a Grothendieck topology over the category ACatfg(TsAig) ~ The 
Grothendieck topos Eszar associated with the site (ACatfg(TsA~g) ~ Lszar) is 
called the smooth Zariski topos. 

Let X be a Boolean locale, which shall be fixed throughout the remainder 
of this section. Therefore Booleanization shall always mean Booleanization 
with respect to X. 

Example A.6. The notion of the algebraic theory T~g in Example A.1 
can be Booleanized, and we get the notion of the algebraic X-theory 3 - ~  (X). 
The total objects of ~ ' ~ ( X ;  ,~-~,(X)) are called X-rings. 

Let ,9~ be an X-ring, which shall be fixed for the following two examples. 

Example A. 7. The notion of the algebraic theory Tk-AIg in Example A.2 
can be Booleanized, and we get the notion of the algebraic X-theory 
�9 ~.~n~,a (X). The total objects of ~ r  ~.~n~,~ (X)) are called X-algebras 
over ~qZ. 

Example A.8. The notion of the Grothendieck topology Lk-zar in Example 
A.3 can be Booleanized, and we get the notion of the Grothendieck 
X-topology -~_~a~.[X] over the X-category ~,~r  ~ . ~ [ X ] ) .  

Example A.9. The notion of the algebraic theory TSAIg in Example A.4 
can be Booleanized, and we get the notion of the algebraic X-theory 9 - ~  [X]. 
The total objects of ~ [~zz ' (X;  ~,~.~r [X]) are called smooth X-algebras. 

Example A. 10. The notion of the Grothendieck topology Lsz,r in Example 
A.5 can be Booleanized, and we get the notion of the Grothendieck 
X-topologySa~z.~.~[X] over the X-category ~'zC~teg(X; 3-~,~ [X]). 
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